Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging.
نویسندگان
چکیده
Quantitative photoacoustic imaging (qPAI) has the potential to provide high- resolution in vivo images of chromophore concentration, which may be indicative of tissue function and pathology. Many strategies have been proposed recently for extracting quantitative information, but many have not been experimentally verified. Experimental phantom-based validation studies can be used to test the robustness and accuracy of such algorithms in order to ensure reliable in vivo application is possible. The phantoms used in such studies must have well-characterised optical and acoustic properties similar to tissue, and be versatile and stable. Polyvinyl chloride plastisol (PVCP) has been suggested as a phantom for quality control and system evaluation. By characterising its multiwavelength optical properties, broadband acoustic properties and thermoelastic behaviour, this paper examines its potential as a phantom for qPAI studies too. PVCP's acoustic properties were assessed for various formulations, as well as its intrinsic optical absorption, and scattering with added TiO2, over a range of wavelengths from 400-2000 nm. To change the absorption coefficient, pigment-based chromophores that are stable during the phantom fabrication process, were used. These yielded unique spectra analogous to tissue chromophores and linear with concentration. At the high peak powers typically used in photoacoustic imaging, nonlinear optical absorption was observed. The Grüneisen parameter was measured to be [Formula: see text] = 1.01 ± 0.05, larger than typically found in tissue, though useful for increased PA signal. Single and multiwavelength 3D PA imaging of various fabricated PVCP phantoms were demonstrated.
منابع مشابه
Characterisation of a PVCP based tissue-mimicking phantom for Quantitative Photoacoustic Imaging
Photoacoustic imaging can provide high resolution images of tissue structure, pathology and function. As these images can be obtained at multiple wavelengths, quantitatively accurate, spatially resolved, estimates for chromophore concentration, for example, may be obtainable. Such a capability would find a wide range of clinical and pre-clinical applications. However, despite a growing body of ...
متن کاملQuantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme.
A model-based inversion scheme was used to determine absolute chromophore concentrations from multiwavelength photoacoustic images. The inversion scheme incorporated a forward model, which predicted 2D images of the initial pressure distribution as a function of the spatial distribution of the chromophore concentrations. It comprised a multiwavelength diffusion based model of the light transpor...
متن کاملMultiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods
The establishment of multiplex photoacoustic molecular imaging to characterize heterogeneous tissues requires the use of a tunable, thermally stable contrast agent targeted to specific cell types. We have developed a multiplex photoacoustic imaging technique which uses targeted silica-coated gold nanorods to distinguish cell inclusions in vitro. This paper describes the use of tunable targeted ...
متن کاملDual wavelength laser diode excitation source for 2D photoacoustic imaging
Photoacoustic methods can be used to make spatially resolved spectroscopic measurements of blood oxygenation when using a multiwavelength excitation source, such as an OPO system. Since these excitation sources are usually expensive and bulky, an alternative is to use laser diodes. A fibre coupled laser diode excitation system has been developed, providing two wavelengths, 850 and 905nm, each c...
متن کاملQuantitative in vivo measurements of blood oxygen saturation using multiwavelength photoacoustic imaging
Multiwavelength photoacoustic imaging was used to make spatially resolved measurements of blood oxygen saturation (sO2) in vivo. 2D cross-sectional images of the initial absorbed optical energy distribution in the finger were acquired at near-infrared wavelengths using a photoacoustic imaging system. Using the structural information from these images, a 2D finite element forward model of the li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 61 13 شماره
صفحات -
تاریخ انتشار 2016